A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics
An explicit finite-volume solver is proposed for numerical simulation of non-hydrostatic atmospheric dynamics with promise for efficiency on massively parallel machines via low communication needs and large time steps. Solving the governing equations with a single stage lowers communication, and usi...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2011-02, Vol.230 (4), p.1567-1584 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An explicit finite-volume solver is proposed for numerical simulation of non-hydrostatic atmospheric dynamics with promise for efficiency on massively parallel machines via low communication needs and large time steps. Solving the governing equations with a single stage lowers communication, and using the method of characteristics to follow information as it propagates enables large time steps. Using a non-oscillatory interpolant, the method is stable without post-hoc filtering. Characteristic variables (built from interface flux vectors) are integrated upstream from interfaces along their trajectories to compute time-averaged fluxes over a time step. Thus we call this method a Flux-Based Characteristic Semi-Lagrangian (FBCSL) method. Multidimensionality is achieved via a second-order accurate Strang operator splitting. Spatial accuracy is achieved via the third- to fifth-order accurate Weighted Essentially Non-Oscillatory (WENO) interpolant.
We implement the theory to form a 2-D non-hydrostatic compressible (Euler system) atmospheric model in which standard test cases confirm accuracy and stability. We maintain stability with time steps larger than CFL=1 (CFL number determined by the acoustic wave speed, not advection) but note that accuracy degrades unacceptably for most cases with CFL>2. For the smoothest test case, we ran out to CFL=7 to investigate the error associated with simulation at large CFL number time steps. Analysis suggests improvement of trajectory computations will improve error for large CFL numbers. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2010.11.022 |