Irradiation of sorbents by ions of polymorphic metals for modeling super(90)strontium sedimentation

Background, Aims and Scope Advances in radioecology can support improvements in environmental remediation technologies, especially by illuminating interaction processes between polymorphic metal radionuclides and various materials and their ions in aqueous solutions. This study modeled interaction p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2007-06, Vol.14 (4), p.251-255
Hauptverfasser: Kurbatova, E I, Ksenofontov, AI, Dmitriyev, A M, Regens, J L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background, Aims and Scope Advances in radioecology can support improvements in environmental remediation technologies, especially by illuminating interaction processes between polymorphic metal radionuclides and various materials and their ions in aqueous solutions. This study modeled interaction processes of super(90)Sr with transitive metals to delineate the behavior of polymorphic metal radionuclides. Experimental and modeling results confirmed Sr sedimentation was sensitive to the physical impact of radionuclides on various sorbents and possible chemical reactions occurring between the radionuclides and sorbents. Methods Models were developed to simulate super(90)Sr sedimentation process, and the potential physical and chemical reactions accompanying the process. Models were verified, inorganic salts were used as sorbents to absorb metal cations, activity levels were recorded before and after mixing the inorganic salts while the efficiency of sedimentation using the heavy metals composites was quantified. Results and Discussion This research demonstrates that the process of the sedimentation is complex and occurs in several stages. Micro-structural analysis shows that zones of interaction between the sorbent and source metal are formed during the irradiation of the target's metal surface. Electrical-microscopic analysis indicates that the composition of the formed zones of interaction of Ti (Sr) with target metals has various structures. Roentgenophase analysis indicates that the interaction of the ions of a precipitable source and a target occurs according to constitution diagrams of equilibrium systems. The results indicate that application of inorganic salts composites based on modeling increases the efficiency of the deactivation of aqueous solutions when compared to standard aluminum sulfate composite. Conclusions Experimental and modeling results confirm super(90)Sr sedimentation is sensitive to the physical impact of radionuclides on various sorbents and possible chemical reactions occurring between the radionuclides and sorbents. The models support estimation of the physical impact of polymorphic metal radionuclides on various components of sorbents and possible chemical reactions occurring between the radionuclides and sorbents during the interaction. Inorganic salt composites deactivate and clear super(90)Sr and Sr super(+2) from water.
ISSN:0944-1344
1614-7499
DOI:10.1065/espr2007.03.403