Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury

Overwhelming evidence suggests that ischemia-reperfusion injury of the kidney is an inflammatory disease mediated by innate and adoptive immune systems. The neuronal guidance molecule netrin-1 was shown to modulate inflammatory responses. Given that ischemic kidney is particularly prone to reperfusi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2010-09, Vol.185 (6), p.3750-3758
Hauptverfasser: Tadagavadi, Raghu Kempegowda, Wang, Weiwei, Ramesh, Ganesan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overwhelming evidence suggests that ischemia-reperfusion injury of the kidney is an inflammatory disease mediated by innate and adoptive immune systems. The neuronal guidance molecule netrin-1 was shown to modulate inflammatory responses. Given that ischemic kidney is particularly prone to reperfusion-elicited inflammation, we sought to determine the function of netrin-1 and its receptor UNC5B in ischemia-reperfusion-induced inflammation. Renal ischemia-reperfusion caused a rapid decrease in serum netrin-1 levels. Administration of recombinant netrin-1 before or after renal ischemia-reperfusion reduced kidney injury, apoptosis, monocyte and neutrophil infiltration, and cytokine (IL-6, IL-1beta, and TNF-alpha) and chemokine (MCP-1, macrophage-derived cytokine, monokine-induced IFN-gamma, keratinocyte-derived chemokine, and chemokine with 6 cysteines) production. Analysis for different netrin-1 receptors on leukocytes showed very high expression of UNC5B but not UNC5C, UNC5D, neogenin, or deleted in colorectal cancer. Expression of UNC5A was low. Neutralization of UNC5B receptor reduced netrin-1-mediated protection against renal ischemia-reperfusion injury, and it increased monocyte and neutrophil infiltration, as well as serum and renal cytokine and chemokine production, with increased kidney injury and renal tubular cell apoptosis. Finally, investigation into netrin-1's effect on CD4 T cell stimulation showed suppression of Th1/Th2/Th17 cytokine (IL-2, IL-6, IL-10, IL-13, IL-17, IFN-gamma, IL-4, and TNF-alpha) production in vitro. Our studies demonstrate that netrin-1 acting through UNC5B receptor reduces renal ischemia-reperfusion injury and its associated renal inflammation.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1000435