Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy

Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2011-02, Vol.8 (1), p.50-55
Hauptverfasser: Haisma, Hidde J, Bellu, Anna Rita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction efficiency. Intravenous administration of low doses of adenovirus results in adenovirus sequestration in the liver due to binding to the scavenger receptor present on Kupffer cells. When the amount of adenovirus surpasses the binding capacity of Kupffer cells, hepatocytes absorb adenovirus particles in a blood factor-dependent manner. Increasing the Ad dose even more will saturate both the Kupffer cells and hepatocytes. Then sinusoid endothelial cells bind adenovirus particles in an RGD motif-dependent manner. Strategies to eradicate the binding to liver cells include drugs to interfere or eliminate binding to specific cell types, adenovirus capsid protein mutations and chemical modifications of adenovirus to shield the capsid proteins from cellular receptors. The combined use of these approaches should ultimately lead to successful systemic application of adenovirus in humans.
ISSN:1543-8384
1543-8392
DOI:10.1021/mp100310h