On the grassmann module of symplectic dual polar spaces of rank 4 in characteristic 3
Let V be the Weyl module of dimension 2 n n − 2 n n − 2 for the symplectic group Sp ( 2 n , F ) whose highest weight is the n th fundamental dominant weight. The module V affords the grassmann embedding of the symplectic dual polar space D W ( 2 n − 1 , F ) , therefore V is also called the grassmann...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2010-11, Vol.310 (22), p.3219-3227 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
V
be the Weyl module of dimension
2
n
n
−
2
n
n
−
2
for the symplectic group
Sp
(
2
n
,
F
)
whose highest weight is the
n
th fundamental dominant weight. The module
V
affords the grassmann embedding of the symplectic dual polar space
D
W
(
2
n
−
1
,
F
)
, therefore
V
is also called the grassmann module for the symplectic group.
We consider the smallest case for
char
(
F
)
odd for which
V
is reducible, namely
n
=
4
and
char
(
F
)
=
3
. In this case the unique factor
R
of
V
has vector dimension 1. Here we provide a geometric description for
R
and study some relations between
R
and other objects associated with the grassmann embedding. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2009.10.017 |