The Structure of the Accretion Disk in the Accretion Disk Corona X-ray Binary 4U 1822–371 at Optical and Ultraviolet Wavelengths

The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel on the Hubble Space Telescope and new V- and J-band photometry with the 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2010-01, Vol.709 (1), p.251-262
Hauptverfasser: Bayless, Amanda J, Robinson, Edward L, Hynes, Robert I, Ashcraft, Teresa A, Cornell, Mark E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy of 4U 1822-371 with the Advanced Camera for Surveys/Solar Blind Channel on the Hubble Space Telescope and new V- and J-band photometry with the 1.3 m SMARTS telescope at Cerro Tololo Inter-American Observatory. We use the new data to construct its UV/optical spectral energy distribution and its orbital light curve in the UV, V, and J bands. We derive an improved ephemeris for the optical eclipses and confirm that the orbital period is changing rapidly, indicating extremely high rates of mass flow in the system, and we show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km s{sup -1}. We show that the disk has a vertically extended, optically thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to approx0.5 of the disk radius. As it has a low brightness temperature, we identify it as the optically thick base of a disk wind, not as the optical counterpart of the ADC. Like previous models of 4U 1822-371, ours needs a tall obscuring wall near the edge of the accretion disk, but we interpret the wall as a layer of cooler material at the base of the disk wind, not as a tall, luminous disk rim.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/709/1/251