Periodontal regeneration using engineered bone marrow mesenchymal stromal cells

Abstract Regeneration of lost periodontium is a challenge in that both hard (alveolar bone, cementum) and soft (periodontal ligament) connective tissues need to be restored to their original architecture. Bone marrow mesenchymal stromal cells (BM-MSCs) appear to be an attractive candidate for connec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2010-11, Vol.31 (33), p.8574-8582
Hauptverfasser: Yang, Yi, Rossi, Fabio M.V, Putnins, Edward E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Regeneration of lost periodontium is a challenge in that both hard (alveolar bone, cementum) and soft (periodontal ligament) connective tissues need to be restored to their original architecture. Bone marrow mesenchymal stromal cells (BM-MSCs) appear to be an attractive candidate for connective tissue regeneration. We hypothesized that BM-MSCs are able to sense biological cues from the local microenvironment and organize appropriately to contribute to the regeneration of both soft and hard periodontal connective tissues. To test this hypothesis, we transplanted GFP+ rat BM-MSCs expanded ex vivo on microcarrier gelatin beads into a surgically created rat periodontal defect. After three weeks, evidence of regeneration of bone, cementum and periodontal ligament was observed in both transplanted and control animals. However, the animals that received BM-MSCs regenerated significantly greater new bone. In addition, the animals that had received the cells and beads transplant had significantly more appropriately orientated periodontal ligament fibers, indicative of functional restoration. Finally, donor-derived BM-MSCs were found integrated in newly formed bone, cementum and periodontal ligament, suggesting that they can directly contribute to the regeneration of cells of these tissues.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2010.06.026