Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles

Abstract Small interfering RNAs (siRNAs) are capable of targeting and destroying specific mRNAs, making them particularly suited to the treatment of neurodegenerative conditions such as Huntington’s Disease where the production of abnormal proteins results in a gain-of-function phenotype. Although a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2010-11, Vol.31 (33), p.8770-8779
Hauptverfasser: Wong, Yunyi, Markham, Kathryn, Xu, Zhi Ping, Chen, Min, (Max) Lu, Gao Qing, Bartlett, Perry F, Cooper, Helen M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Small interfering RNAs (siRNAs) are capable of targeting and destroying specific mRNAs, making them particularly suited to the treatment of neurodegenerative conditions such as Huntington’s Disease where the production of abnormal proteins results in a gain-of-function phenotype. Although a variety of nanoparticle formulations are currently under development as siRNA delivery systems, application of these technologies has been limited by their high cytotoxicity, low drug loading capacity and release, and inability to penetrate cell membranes. Layered double hydroxide (LDH) nanoparticles are now emerging as a potential new drug delivery system as they exhibit low cytotoxicity and are highly biocompatible. Here we present the first study investigating LDH delivery of siRNAs to primary cultured neurons. We show that internalization by neurons is rapid, dose-dependent and saturable, and markedly more efficient than in other cell types. We demonstrate that siRNA–LDH complexes are internalized by clathrin-dependent endocytosis at the cell body and in neurites, with subsequent retrograde transport to the cell body followed by efficient release into the cytoplasm. Finally we show that LDH mediated siRNA delivery effectively silences neuronal gene expression. This study therefore confirms the potential of LDH nanoparticles as a drug delivery system for patients suffering from neurodegenerative disease.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2010.07.077