Observations of Doppler Boosting in Kepler Light Curves

Among the initial results from Kepler were two striking light curves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That result became particularly intriguing because a su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2010-05, Vol.715 (1), p.51-58
Hauptverfasser: van Kerkwijk, Marten H, Rappaport, Saul A, Breton, René P, Justham, Stephen, Podsiadlowski, Philipp, Han, Zhanwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among the initial results from Kepler were two striking light curves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That result became particularly intriguing because a substellar mass had been derived for the secondary in KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large that we can use it to infer a radial velocity amplitude accurate to 1 km s{sup -1}. As far as we are aware, this is the first time a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22 {+-} 0.03 M{sub sun}. We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/715/1/51