Initial conditions and initialization of linear fractional differential equations
Mastery of the initial conditions of fractional order systems remains an open problem, in spite of a great number of contributions. This paper proposes a solution dedicated to linear fractional differential equations (FDEs), which is based on an equivalence principle between the original system and...
Gespeichert in:
Veröffentlicht in: | Signal processing 2011-03, Vol.91 (3), p.427-436 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mastery of the initial conditions of fractional order systems remains an open problem, in spite of a great number of contributions. This paper proposes a solution dedicated to linear fractional differential equations (FDEs), which is based on an equivalence principle between the original system and an exactly equivalent infinite dimensional ordinary differential equation (ODE). This equivalence principle is derived from the fractional integration operator concept and the frequency distributed state space model of this operator. Thanks to this principle, the FDE initial conditions problem is converted into a conventional ODE initialization problem, however with an infinite dimensional state vector. Practical FDE initialization is performed using an observer based technique applied to the equivalent ODE; a numerical example demonstrates the efficiency of this approach. |
---|---|
ISSN: | 0165-1684 1872-7557 |
DOI: | 10.1016/j.sigpro.2010.03.010 |