Canonicalization of Feature Parameters for Robust Speech Recognition Based on Distinctive Phonetic Feature (DPF) Vectors

This paper describes a robust automatic speech recognition (ASR) system with less computation. Acoustic models of a hidden Markov model (HMM)-based classifier include various types of hidden factors such as speaker-specific characteristics, coarticulation, and an acoustic environment, etc. If there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2008/03/01, Vol.E91.D(3), pp.488-498
Hauptverfasser: HUDA, Mohammad NURUL, GHULAM, Muhammad, FUKUDA, Takashi, KATSURADA, Kouichi, NITTA, Tsuneo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a robust automatic speech recognition (ASR) system with less computation. Acoustic models of a hidden Markov model (HMM)-based classifier include various types of hidden factors such as speaker-specific characteristics, coarticulation, and an acoustic environment, etc. If there exists a canonicalization process that can recover the degraded margin of acoustic likelihoods between correct phonemes and other ones caused by hidden factors, the robustness of ASR systems can be improved. In this paper, we introduce a canonicalization method that is composed of multiple distinctive phonetic feature (DPF) extractors corresponding to each hidden factor canonicalization, and a DPF selector which selects an optimum DPF vector as an input of the HMM-based classifier. The proposed method resolves gender factors and speaker variability, and eliminates noise factors by applying the canonicalzation based on the DPF extractors and two-stage Wiener filtering. In the experiment on AURORA-2J, the proposed method provides higher word accuracy under clean training and significant improvement of word accuracy in low signal-to-noise ratio (SNR) under multi-condition training compared to a standard ASR system with mel frequency ceptral coeffient (MFCC) parameters. Moreover, the proposed method requires a reduced, two-fifth, Gaussian mixture components and less memory to achieve accurate ASR.
ISSN:0916-8532
1745-1361
1745-1361
DOI:10.1093/ietisy/e91-d.3.488