Co-modeling, Experimental Verification, and Analysis of Chip-Package Hierarchical Power Distribution Network
In this paper, we present and verify a new chip-package co-modeling and simulation approach for a low-noise chip-package hierarchical power distribution network (PDN) design. It is based on a hierarchical modeling to combine distributed circuit models at both chip-level PDN and package-level PDN. In...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Electronics 2008/04/01, Vol.E91.C(4), pp.595-606 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present and verify a new chip-package co-modeling and simulation approach for a low-noise chip-package hierarchical power distribution network (PDN) design. It is based on a hierarchical modeling to combine distributed circuit models at both chip-level PDN and package-level PDN. In particular, it includes all on- and off-chip parasitic circuit elements in the hierarchical PDN with a special consideration on on-chip decoupling capacitor design and placement inside chip. The proposed hierarchical PDN model was successfully validated with good correlations and subsequent analysis to a series of Z11 and Z21 PDN impedance measurements with a frequency range from 1MHz to 3GHz. Using the proposed model, we can analyze and estimate the performance of the chip-package hierarchical PDN as well as can predict the effect of high frequency electromagnetic interactions between the chip-level PDN and the package-level PDN. Furthermore, we can precisely anticipate PDN resonance frequencies, noise generation sources, and noise propagation paths through the multiple levels in the hierarchical PDN. |
---|---|
ISSN: | 0916-8524 1745-1353 1745-1353 |
DOI: | 10.1093/ietele/e91-c.4.595 |