Injective colorings of sparse graphs

Let mad ( G ) denote the maximum average degree (over all subgraphs) of G and let χ i ( G ) denote the injective chromatic number of G . We prove that if mad ( G ) ≤ 5 2 , then χ i ( G ) ≤ Δ ( G ) + 1 ; and if mad ( G ) < 42 19 , then χ i ( G ) = Δ ( G ) . Suppose that G is a planar graph with gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2010-11, Vol.310 (21), p.2965-2973
Hauptverfasser: Cranston, Daniel W., Kim, Seog-Jin, Yu, Gexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2973
container_issue 21
container_start_page 2965
container_title Discrete mathematics
container_volume 310
creator Cranston, Daniel W.
Kim, Seog-Jin
Yu, Gexin
description Let mad ( G ) denote the maximum average degree (over all subgraphs) of G and let χ i ( G ) denote the injective chromatic number of G . We prove that if mad ( G ) ≤ 5 2 , then χ i ( G ) ≤ Δ ( G ) + 1 ; and if mad ( G ) < 42 19 , then χ i ( G ) = Δ ( G ) . Suppose that G is a planar graph with girth g ( G ) and Δ ( G ) ≥ 4 . We prove that if g ( G ) ≥ 9 , then χ i ( G ) ≤ Δ ( G ) + 1 ; similarly, if g ( G ) ≥ 13 , then χ i ( G ) = Δ ( G ) .
doi_str_mv 10.1016/j.disc.2010.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849451737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X10002736</els_id><sourcerecordid>849451737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-c7152ffc33b2c81de33e3cede98e22cc510cc78f29909a335d1601ee5437999c3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_AU85KJ4S96PJ7oIXKX4UCl4UelvWyaRuSJO60xb8793S4tHTMMN7b3g_xq4FLwQX1X1b1IGgkDwduC44VydsJIyWeWXE4pSNOBcyV1W5OGcXRC1Pe6XMiN3M-hZhE3aYwdANMfRLyoYmo7WPhNky-vUXXbKzxneEV8c5Zh_PT-_T13z-9jKbPs5zUJXc5KBFKZsGlPqUYESNSqECrNEalBKgFBxAm0Zay61XqqxFxQViOVHaWgtqzO4Oues4fG-RNm6VWmHX-R6HLTkzsZNSaKWTUh6UEAeiiI1bx7Dy8ccJ7vZEXOv2RNyeiOPaJSLJdHuM9wS-a6LvIdCfUyoppCl50j0cdJi67gJGRxCwT01CTKxcPYT_3vwC-Ux1gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849451737</pqid></control><display><type>article</type><title>Injective colorings of sparse graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cranston, Daniel W. ; Kim, Seog-Jin ; Yu, Gexin</creator><creatorcontrib>Cranston, Daniel W. ; Kim, Seog-Jin ; Yu, Gexin</creatorcontrib><description>Let mad ( G ) denote the maximum average degree (over all subgraphs) of G and let χ i ( G ) denote the injective chromatic number of G . We prove that if mad ( G ) ≤ 5 2 , then χ i ( G ) ≤ Δ ( G ) + 1 ; and if mad ( G ) &lt; 42 19 , then χ i ( G ) = Δ ( G ) . Suppose that G is a planar graph with girth g ( G ) and Δ ( G ) ≥ 4 . We prove that if g ( G ) ≥ 9 , then χ i ( G ) ≤ Δ ( G ) + 1 ; similarly, if g ( G ) ≥ 13 , then χ i ( G ) = Δ ( G ) .</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.07.003</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algebra ; Applied sciences ; Coloring ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Graphs ; Information retrieval. Graph ; Injective coloring ; Mathematical analysis ; Mathematics ; Maximum average degree ; Planar graph ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Discrete mathematics, 2010-11, Vol.310 (21), p.2965-2973</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-c7152ffc33b2c81de33e3cede98e22cc510cc78f29909a335d1601ee5437999c3</citedby><cites>FETCH-LOGICAL-c362t-c7152ffc33b2c81de33e3cede98e22cc510cc78f29909a335d1601ee5437999c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012365X10002736$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23212850$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cranston, Daniel W.</creatorcontrib><creatorcontrib>Kim, Seog-Jin</creatorcontrib><creatorcontrib>Yu, Gexin</creatorcontrib><title>Injective colorings of sparse graphs</title><title>Discrete mathematics</title><description>Let mad ( G ) denote the maximum average degree (over all subgraphs) of G and let χ i ( G ) denote the injective chromatic number of G . We prove that if mad ( G ) ≤ 5 2 , then χ i ( G ) ≤ Δ ( G ) + 1 ; and if mad ( G ) &lt; 42 19 , then χ i ( G ) = Δ ( G ) . Suppose that G is a planar graph with girth g ( G ) and Δ ( G ) ≥ 4 . We prove that if g ( G ) ≥ 9 , then χ i ( G ) ≤ Δ ( G ) + 1 ; similarly, if g ( G ) ≥ 13 , then χ i ( G ) = Δ ( G ) .</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Coloring</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Injective coloring</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximum average degree</subject><subject>Planar graph</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFb_AU85KJ4S96PJ7oIXKX4UCl4UelvWyaRuSJO60xb8793S4tHTMMN7b3g_xq4FLwQX1X1b1IGgkDwduC44VydsJIyWeWXE4pSNOBcyV1W5OGcXRC1Pe6XMiN3M-hZhE3aYwdANMfRLyoYmo7WPhNky-vUXXbKzxneEV8c5Zh_PT-_T13z-9jKbPs5zUJXc5KBFKZsGlPqUYESNSqECrNEalBKgFBxAm0Zay61XqqxFxQViOVHaWgtqzO4Oues4fG-RNm6VWmHX-R6HLTkzsZNSaKWTUh6UEAeiiI1bx7Dy8ccJ7vZEXOv2RNyeiOPaJSLJdHuM9wS-a6LvIdCfUyoppCl50j0cdJi67gJGRxCwT01CTKxcPYT_3vwC-Ux1gQ</recordid><startdate>20101106</startdate><enddate>20101106</enddate><creator>Cranston, Daniel W.</creator><creator>Kim, Seog-Jin</creator><creator>Yu, Gexin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101106</creationdate><title>Injective colorings of sparse graphs</title><author>Cranston, Daniel W. ; Kim, Seog-Jin ; Yu, Gexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-c7152ffc33b2c81de33e3cede98e22cc510cc78f29909a335d1601ee5437999c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Coloring</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Injective coloring</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximum average degree</topic><topic>Planar graph</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cranston, Daniel W.</creatorcontrib><creatorcontrib>Kim, Seog-Jin</creatorcontrib><creatorcontrib>Yu, Gexin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cranston, Daniel W.</au><au>Kim, Seog-Jin</au><au>Yu, Gexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Injective colorings of sparse graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2010-11-06</date><risdate>2010</risdate><volume>310</volume><issue>21</issue><spage>2965</spage><epage>2973</epage><pages>2965-2973</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>Let mad ( G ) denote the maximum average degree (over all subgraphs) of G and let χ i ( G ) denote the injective chromatic number of G . We prove that if mad ( G ) ≤ 5 2 , then χ i ( G ) ≤ Δ ( G ) + 1 ; and if mad ( G ) &lt; 42 19 , then χ i ( G ) = Δ ( G ) . Suppose that G is a planar graph with girth g ( G ) and Δ ( G ) ≥ 4 . We prove that if g ( G ) ≥ 9 , then χ i ( G ) ≤ Δ ( G ) + 1 ; similarly, if g ( G ) ≥ 13 , then χ i ( G ) = Δ ( G ) .</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2010.07.003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2010-11, Vol.310 (21), p.2965-2973
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_849451737
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebra
Applied sciences
Coloring
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Graph theory
Graphs
Information retrieval. Graph
Injective coloring
Mathematical analysis
Mathematics
Maximum average degree
Planar graph
Sciences and techniques of general use
Theoretical computing
title Injective colorings of sparse graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Injective%20colorings%20of%20sparse%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Cranston,%20Daniel%20W.&rft.date=2010-11-06&rft.volume=310&rft.issue=21&rft.spage=2965&rft.epage=2973&rft.pages=2965-2973&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.07.003&rft_dat=%3Cproquest_cross%3E849451737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849451737&rft_id=info:pmid/&rft_els_id=S0012365X10002736&rfr_iscdi=true