Injective colorings of sparse graphs
Let mad ( G ) denote the maximum average degree (over all subgraphs) of G and let χ i ( G ) denote the injective chromatic number of G . We prove that if mad ( G ) ≤ 5 2 , then χ i ( G ) ≤ Δ ( G ) + 1 ; and if mad ( G ) < 42 19 , then χ i ( G ) = Δ ( G ) . Suppose that G is a planar graph with gi...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2010-11, Vol.310 (21), p.2965-2973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
mad
(
G
)
denote the maximum average degree (over all subgraphs) of
G
and let
χ
i
(
G
)
denote the injective chromatic number of
G
. We prove that if
mad
(
G
)
≤
5
2
, then
χ
i
(
G
)
≤
Δ
(
G
)
+
1
; and if
mad
(
G
)
<
42
19
, then
χ
i
(
G
)
=
Δ
(
G
)
. Suppose that
G
is a planar graph with girth
g
(
G
)
and
Δ
(
G
)
≥
4
. We prove that if
g
(
G
)
≥
9
, then
χ
i
(
G
)
≤
Δ
(
G
)
+
1
; similarly, if
g
(
G
)
≥
13
, then
χ
i
(
G
)
=
Δ
(
G
)
. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2010.07.003 |