High Moisture Resistant and Reliable Gate Structure Design in High Power pHEMTs for Millimeter-Wave Applications
This paper reports the new gate and recess structure design of millimeter-wave, high power pHEMTs, which highly improves humidity resistance and reliability. By using tantalum nitride as the refractory gate metal and a silicon nitride layer prepared by a catalytic chemical vapor deposition technique...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Electronics 2008/05/01, Vol.E91.C(5), pp.676-682 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports the new gate and recess structure design of millimeter-wave, high power pHEMTs, which highly improves humidity resistance and reliability. By using tantalum nitride as the refractory gate metal and a silicon nitride layer prepared by a catalytic chemical vapor deposition technique for passivation of this transistor, strong moisture resistance was obtained without degradation of the device characteristics. Moreover, we have designed a stepped recess structure to increase the on-state breakdown voltage without degradation of the power density of the millimeter-wave pHEMT, according to the analysis based on the new nonlinear drain resistance model. Consequently, the developed pHEMT has shown strong humidity resistance with no degradation of the DC characteristics even after 1000 hours storage at 400K and 85% humidity, and the high on-state breakdown voltage of over 30V while keeping the high power density of 0.65W/mm in the Ka band. In addition, the proposed nonlinear drain resistance model effectively explains this power performance. |
---|---|
ISSN: | 0916-8524 1745-1353 1745-1353 |
DOI: | 10.1093/ietele/e91-c.5.676 |