On complete-cocomplete subspaces of an inner product space

In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ-additive state on C(S), the orthomodular poset of complete-cocomplete subspaces of S. We then consider the problem of w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of mathematics (Prague) 2005-04, Vol.50 (2), p.103-114
Hauptverfasser: Buhagiar, David, Chetcuti, Emanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 2
container_start_page 103
container_title Applications of mathematics (Prague)
container_volume 50
creator Buhagiar, David
Chetcuti, Emanuel
description In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ-additive state on C(S), the orthomodular poset of complete-cocomplete subspaces of S. We then consider the problem of whether every state on E(S), the class of splitting subspaces of S, can be extended to a Hilbertian state on E([bar S]); we show that for the dense hyperplane S (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111-2117, every state on E(S) is a restriction of a state on E([bar S]).[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10492-005-0007-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849444321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849444321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2141-dcb62d15b90692b1b32232acd7dd9edbe8565e6bf8606c855e61b24aa31f6baa3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-AG_Fi6foTJqmiTdZ_IKFveg55KuwS7epSXvw35t19eJheAfmYWZ4CLlGuEOA9j4jcMUoQFMKWoonZIFNy6hCUKdkAVIw2ioO5-Qi511hlJByQR42Q-XifuzDFKiLf22VZ5tH40KuYleZodoOQ0jVmKKf3VT9jC7JWWf6HK5-c0k-np_eV690vXl5Wz2uqWPIkXpnBfPYWAVCMYu2ZqxmxvnWexW8DbIRTRC2kwKEk03p0TJuTI2dsCWW5Pa4t1z_nEOe9H6bXeh7M4Q4Zy254pzXDAt584_cxTkN5TktkbeKKWAFwiPkUsw5hU6Pabs36Usj6INLfXSpi0t9cKmx_gaFEmYr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>814792902</pqid></control><display><type>article</type><title>On complete-cocomplete subspaces of an inner product space</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>Buhagiar, David ; Chetcuti, Emanuel</creator><creatorcontrib>Buhagiar, David ; Chetcuti, Emanuel</creatorcontrib><description>In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ-additive state on C(S), the orthomodular poset of complete-cocomplete subspaces of S. We then consider the problem of whether every state on E(S), the class of splitting subspaces of S, can be extended to a Hilbertian state on E([bar S]); we show that for the dense hyperplane S (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111-2117, every state on E(S) is a restriction of a state on E([bar S]).[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.1007/s10492-005-0007-1</identifier><language>eng</language><publisher>Prague: Springer Nature B.V</publisher><subject>Applications of mathematics ; Completeness ; Constrictions ; Construction ; Criteria ; Hilbert space ; Hyperplanes ; Mathematical problems ; Splitting ; Studies ; Subspaces</subject><ispartof>Applications of mathematics (Prague), 2005-04, Vol.50 (2), p.103-114</ispartof><rights>Springer Science+Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2141-dcb62d15b90692b1b32232acd7dd9edbe8565e6bf8606c855e61b24aa31f6baa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Buhagiar, David</creatorcontrib><creatorcontrib>Chetcuti, Emanuel</creatorcontrib><title>On complete-cocomplete subspaces of an inner product space</title><title>Applications of mathematics (Prague)</title><description>In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ-additive state on C(S), the orthomodular poset of complete-cocomplete subspaces of S. We then consider the problem of whether every state on E(S), the class of splitting subspaces of S, can be extended to a Hilbertian state on E([bar S]); we show that for the dense hyperplane S (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111-2117, every state on E(S) is a restriction of a state on E([bar S]).[PUBLICATION ABSTRACT]</description><subject>Applications of mathematics</subject><subject>Completeness</subject><subject>Constrictions</subject><subject>Construction</subject><subject>Criteria</subject><subject>Hilbert space</subject><subject>Hyperplanes</subject><subject>Mathematical problems</subject><subject>Splitting</subject><subject>Studies</subject><subject>Subspaces</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE1LxDAQhoMouK7-AG_Fi6foTJqmiTdZ_IKFveg55KuwS7epSXvw35t19eJheAfmYWZ4CLlGuEOA9j4jcMUoQFMKWoonZIFNy6hCUKdkAVIw2ioO5-Qi511hlJByQR42Q-XifuzDFKiLf22VZ5tH40KuYleZodoOQ0jVmKKf3VT9jC7JWWf6HK5-c0k-np_eV690vXl5Wz2uqWPIkXpnBfPYWAVCMYu2ZqxmxvnWexW8DbIRTRC2kwKEk03p0TJuTI2dsCWW5Pa4t1z_nEOe9H6bXeh7M4Q4Zy254pzXDAt584_cxTkN5TktkbeKKWAFwiPkUsw5hU6Pabs36Usj6INLfXSpi0t9cKmx_gaFEmYr</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Buhagiar, David</creator><creator>Chetcuti, Emanuel</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20050401</creationdate><title>On complete-cocomplete subspaces of an inner product space</title><author>Buhagiar, David ; Chetcuti, Emanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2141-dcb62d15b90692b1b32232acd7dd9edbe8565e6bf8606c855e61b24aa31f6baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applications of mathematics</topic><topic>Completeness</topic><topic>Constrictions</topic><topic>Construction</topic><topic>Criteria</topic><topic>Hilbert space</topic><topic>Hyperplanes</topic><topic>Mathematical problems</topic><topic>Splitting</topic><topic>Studies</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhagiar, David</creatorcontrib><creatorcontrib>Chetcuti, Emanuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhagiar, David</au><au>Chetcuti, Emanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On complete-cocomplete subspaces of an inner product space</atitle><jtitle>Applications of mathematics (Prague)</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>50</volume><issue>2</issue><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ-additive state on C(S), the orthomodular poset of complete-cocomplete subspaces of S. We then consider the problem of whether every state on E(S), the class of splitting subspaces of S, can be extended to a Hilbertian state on E([bar S]); we show that for the dense hyperplane S (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111-2117, every state on E(S) is a restriction of a state on E([bar S]).[PUBLICATION ABSTRACT]</abstract><cop>Prague</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10492-005-0007-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of mathematics (Prague), 2005-04, Vol.50 (2), p.103-114
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_miscellaneous_849444321
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals
subjects Applications of mathematics
Completeness
Constrictions
Construction
Criteria
Hilbert space
Hyperplanes
Mathematical problems
Splitting
Studies
Subspaces
title On complete-cocomplete subspaces of an inner product space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20complete-cocomplete%20subspaces%20of%20an%20inner%20product%20space&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Buhagiar,%20David&rft.date=2005-04-01&rft.volume=50&rft.issue=2&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.1007/s10492-005-0007-1&rft_dat=%3Cproquest_cross%3E849444321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=814792902&rft_id=info:pmid/&rfr_iscdi=true