On complete-cocomplete subspaces of an inner product space
In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ-additive state on C(S), the orthomodular poset of complete-cocomplete subspaces of S. We then consider the problem of w...
Gespeichert in:
Veröffentlicht in: | Applications of mathematics (Prague) 2005-04, Vol.50 (2), p.103-114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ-additive state on C(S), the orthomodular poset of complete-cocomplete subspaces of S. We then consider the problem of whether every state on E(S), the class of splitting subspaces of S, can be extended to a Hilbertian state on E([bar S]); we show that for the dense hyperplane S (of a separable Hilbert space) constructed by P. Pták and H. Weber in Proc. Am. Math. Soc. 129 (2001), 2111-2117, every state on E(S) is a restriction of a state on E([bar S]).[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0862-7940 1572-9109 |
DOI: | 10.1007/s10492-005-0007-1 |