Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting

Sleep scoring is one of the most important methods for diagnosis in psychiatry and neurology. Sleep staging is a time consuming and difficult task conducted by sleep specialists. The purposes of this work are to automatic score the sleep stages and to help to sleep physicians on sleep stage scoring....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2010-12, Vol.37 (12), p.7922-7928
Hauptverfasser: Güneş, Salih, Polat, Kemal, Yosunkaya, Şebnem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sleep scoring is one of the most important methods for diagnosis in psychiatry and neurology. Sleep staging is a time consuming and difficult task conducted by sleep specialists. The purposes of this work are to automatic score the sleep stages and to help to sleep physicians on sleep stage scoring. In this work, a novel data preprocessing method called k-means clustering based feature weighting (KMCFW) has been proposed and combined with k-NN ( k-nearest neighbor) and decision tree classifiers to classify the EEG (electroencephalogram) sleep into six sleep stages including awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3, REM, and non-sleep (movement time). First of all, frequency domain features belonging to sleep EEG signal have been extracted using Welch spectral analysis method and composed 129 features from EEG signal relating each sleep stages. In order to decrease the features, the statistical features comprising minimum value, maximum value, standard deviation, and mean value have been used and then reduced from 129 to 4 features. In the second phase, the sleep stages dataset with four features has been weighted by means of k-means clustering based feature weighting. Finally, the weighted sleep stages have been automatically classified into six sleep stages using k-NN and C4.5 decision tree classifier. In the classification of sleep stages, the k values of 10, 20, 30, 40, 50, and 60 in k-NN classifier have been used and compared with each other. In the experimental results, while sleep stages has been classified with 55.88% success rate using k-NN classifier (for k value of 40), the weighted sleep stages with KMCFW has been recognized with 82.15% success rate k-NN classifier (for k value of 40). And also, we have investigated the relevance between sleep stages and frequency domain features belonging to EEG signal. These results have demonstrated that proposed weighting method have a considerable impact on automatic determining of sleep stages. This system could be used as an online system in the automatic scoring of sleep stages and helps to sleep physicians in the sleep scoring process.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2010.04.043