The construction and application of an atomistic J-integral via Hardy estimates of continuum fields
In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data in order to estimate the J-integral for the analysis of cracks and dislocations. We show that this method has the properties of: consistency between the energy, stress and deformation fields; path independen...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanics and physics of solids 2010-09, Vol.58 (9), p.1318-1337 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data in order to estimate the
J-integral for the analysis of cracks and dislocations. We show that this method has the properties of: consistency between the energy, stress and deformation fields; path independence of the contour integrals of the Eshelby stress; and excellent correlation with linear elastic fracture mechanics theory for appropriately constructed simulations. We discuss the appropriate reference configuration and reference energy for this type of analysis. Lastly, we use canonical examples to demonstrate that the proposed method is a direct and rational approach for estimating the configurational forces on atomic defects. |
---|---|
ISSN: | 0022-5096 |
DOI: | 10.1016/j.jmps.2010.06.001 |