Recent Advances in Ultra-High-Speed Waveguide Photodiodes for Optical Communication Systems
This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) — an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photo...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Electronics 2009/07/01, Vol.E92.C(7), pp.922-928 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the recent advances in semiconductor photodiodes for use in ultra-high-speed optical systems. We developed two types of waveguide photodiodes (WG-PD) — an evanescently coupled waveguide photodiode (EC-WG-PD) and a separated-absorption-and-multiplication waveguide avalanche photodiode (WG-APD). The EC-WG-PD is very robust under high optical input operation because of its distribution of photo current density along the light propagation. The EC-WG-PD simultaneously exhibited a high external quantum efficiency of 70% for both 1310 and 1550nm, and a wide bandwidth of more than 40GHz. The WG-APD, on the other hand, has a wide bandwidth of 36.5GHz and a gain-bandwidth product of 170GHz as a result of its small waveguide mesa structure and a thin multiplication layer. Record high receiver sensitivity of -19.6dBm at 40Gbps was achieved. Additionally, a monolithically integrated dual EC-WG-PD for differential phase shift-keying (DPSK) systems was developed. Each PD has equivalent characteristics with 3-dB-down bandwidth of more than 40GHz and external quantum efficiency of 70% at 1550nm. |
---|---|
ISSN: | 0916-8524 1745-1353 1745-1353 |
DOI: | 10.1587/transele.E92.C.922 |