Quantitative Proteome and Acidic Subproteome Profiling of Candida albicans Yeast-to-Hypha Transition

Candida albicans yeast-to-hypha morphological transition is involved in the virulence strategy of this opportunistic fungal pathogen. Changes in relative abundance of the Candida proteome related to this process were analyzed using different two-dimensional differential in-gel electrophoresis (2D-DI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2011-02, Vol.10 (2), p.502-517
Hauptverfasser: Monteoliva, Lucia, Martinez-Lopez, Raquel, Pitarch, Aida, Hernaez, Maria Luisa, Serna, Antonio, Nombela, Cesar, Albar, Juan Pablo, Gil, Concha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Candida albicans yeast-to-hypha morphological transition is involved in the virulence strategy of this opportunistic fungal pathogen. Changes in relative abundance of the Candida proteome related to this process were analyzed using different two-dimensional differential in-gel electrophoresis (2D-DIGE)-based approaches. First, a comparative analysis of yeast and hyphal cytoplasmic proteins allowed the detection of 106 protein spots with significant variation in abundance. Sixty-one of them, corresponding to 46 proteins, were identified. As most of the differentially abundant proteins had an acidic isoelectric point, a large-scale prefractionation approach to analyze the acidic C. albicans subproteome was carried out. Ninety acidic C. albicans proteins were identified by either gel-based or nongel-based approaches. Additionally, different workflows combining preparative isoelectric focusing, Cy labeling, and narrow pH gradient 2-DE gels were tested to analyze the differences in relative protein abundance between yeast and hyphal acidic subproteomes. It was possible to identify 21 differentially abundant acidic proteins; 10 of them were not identified in the previous 2D-DIGE gels. Functional and network interaction analyses of the 56 differentially abundant proteins identified by both approaches rendered an integrated view of metabolic and cellular process reorganization during the yeast-to-hypha transition. With these results, we propose a model of metabolic reorganization.
ISSN:1535-3893
1535-3907
DOI:10.1021/pr100710g