Enhancing the Photostability of Poly(3-hexylthiophene) by Preparing Composites with Multiwalled Carbon Nanotubes

Poly(3-hexylthiophene) (P3HT) degrades in organic solvents containing dissolved molecular oxygen when irradiated with ultraviolet light. Hence, it is important to develop strategies that can enhance the photostability of P3HT and enhance the device performance. In this work, we report that preparing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2011-02, Vol.115 (5), p.919-924
Hauptverfasser: Goutam, Prasanta J, Singh, Dilip K, Giri, Pravat K, Iyer, Parameswar K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(3-hexylthiophene) (P3HT) degrades in organic solvents containing dissolved molecular oxygen when irradiated with ultraviolet light. Hence, it is important to develop strategies that can enhance the photostability of P3HT and enhance the device performance. In this work, we report that preparing composites of P3HT with appropriate amounts of multiwalled carbon nanotube (MWCNT) results in superior photostability of P3HT. UV−visible and fluorescence spectroscopy have been used as primary tools to study the photostability of P3HT and its composites. Scanning electron microscopy (SEM) images of the composites display dispersed CNTs being well coated by P3HT. Transmission electron microscopy (TEM) micrographs along with SAED patterns reveal that P3HT coats the CNTs, which is the reason for superior dispersion of the composite. ESR spectroscopy was also performed to pursue and follow the degradation of P3HT. Ten weight percent of MWCNTs in P3HT was found to be the optimum loading amount that results in maximum photostability of the P3HT as compared to the other ratios. This enhanced photostability of P3HT on preparing composites with MWCNT in addition to its easy processability directly from solution makes these composites immensely important for optoelectronic applications.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp109900m