Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to imatinib

The antihypertensive drug amiloride is being considered as a tactic to improve cancer therapy including that for chronic myelogenous leukemia. In this study, we show that amiloride modulates the alternative splicing of various cancer genes, including Bcl-x, HIPK3, and BCR/ABL, and that this effect i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2011-01, Vol.71 (2), p.383-392
Hauptverfasser: Chang, Wen-Hsin, Liu, Ta-Chih, Yang, Wen-Kuang, Lee, Chien-Chih, Lin, Yi-Hsiung, Chen, Tsai-Yun, Chang, Jan-Gowth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The antihypertensive drug amiloride is being considered as a tactic to improve cancer therapy including that for chronic myelogenous leukemia. In this study, we show that amiloride modulates the alternative splicing of various cancer genes, including Bcl-x, HIPK3, and BCR/ABL, and that this effect is not mainly related to pH alteration, which is a known effect of the drug. Splice modulation involved various splicing factors, with the phosphorylation state of serine-arginine-rich (SR) proteins also altered during the splicing process. Pretreatment with okadaic acid to inhibit protein phosphatase PP1 reversed partially the phosphorylation levels of SR proteins and also the amiloride-modulated yields of Bcl-xs and HIPK3 U(-) isoforms. Genome-wide detection of alternative splicing further revealed that many other apoptotic genes were regulated by amiloride, including APAF-1, CRK, and SURVIVIN. Various proteins of the Bcl-2 family and MAPK kinases were found to be involved in amiloride-induced apoptosis. Moreover, the effect of amiloride on mRNA levels of Bcl-x was demonstrated to translate to the protein levels. Cotreatment of K562 and BaF3/Bcr-AblT315I cells with amiloride and imatinib induced more loss of cell viability than either agent alone. Our findings suggest that amiloride may offer a potential treatment option for chronic myelogenous leukemia either alone or in combination with imatinib.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-10-1037