A tight binding model for water
We demonstrate for the first time a tight binding model for water incorporating polarizable oxygen atoms. A novel aspect is that we adopt a "ground up" approach in that properties of the monomer and dimer only are fitted. Subsequently we make predictions of the structure and properties of...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2011-01, Vol.134 (4), p.044130-044130-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate for the first time a tight binding model for water incorporating polarizable oxygen atoms. A novel aspect is that we adopt a "ground up" approach in that properties of the monomer and dimer only are fitted. Subsequently we make predictions of the structure and properties of hexamer clusters, ice-XI and liquid water. A particular feature, missing in current tight binding and semiempirical Hamiltonians, is that we reproduce the almost two-fold increase in molecular dipole moment as clusters are built up toward the limit of bulk liquid. We concentrate on properties of liquid water, particularly dielectric constant and self diffusion coefficient, which are very well rendered in comparison with experiment. Finally we comment on the question of the contrasting densities of water and ice which is central to an understanding of the subtleties of the hydrogen bond. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.3523983 |