Simple method for isolation of glyceraldehyde 3-phosphate dehydrogenase and the improvement of myofibril gel properties
Porcine glycoliytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (G3PD) was prepared effectively by a combination of ethylene diamine tetra-acetate (EDTA) pretreatment and affinity purification. After salting out of porcine sarcoplasmic proteins (SP) with ammonium sulfate at 75% saturation, the...
Gespeichert in:
Veröffentlicht in: | Animal science journal 2011-02, Vol.82 (1), p.136-143 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porcine glycoliytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (G3PD) was prepared effectively by a combination of ethylene diamine tetra-acetate (EDTA) pretreatment and affinity purification. After salting out of porcine sarcoplasmic proteins (SP) with ammonium sulfate at 75% saturation, the obtained supernatant (SP-f3) was treated with EDTA, leaving G3PD in the supernatant (G3PD-E) and most other SPs in the precipitate. At that time, the separation of G3PD-E required more than 20 mmol/L EDTA. G3PD-E was then subjected to affinity purification by batchwise method using blue-sepharose CL-6B, and purified G3PD (G3PD-AP) was obtained using 2 mol/L potassium chloride (KCl) as an eluent. Texture analysis showed that the hardness, adhesiveness and gumminess of the myofibril gel at 0.2-mol/L NaCl increased with the addition of G3PD-AP. Scanning electron microscopy revealed that the G3PD-AP reinforced the gel network of the myofibril. However, scanning electron micrograph analysis showed that the network-structure of the gel by the addition of G3PD-AP developed in a different manner from that by adding 0.6 mol/L NaCl. These results showed that glycolytic enzyme, G3PD, contributes to the improvement of the rheological properties of meat products. |
---|---|
ISSN: | 1344-3941 1740-0929 |
DOI: | 10.1111/j.1740-0929.2010.00807.x |