mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans
Argonaute-associated siRNAs and Piwi-associated piRNAs have overlapping roles in silencing mobile genetic elements in animals. In Caenorhabditis elegans, mutator (mut) class genes mediate siRNA-guided repression of transposons as well as exogenous RNAi, but their roles in endogenous RNA silencing pa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-01, Vol.108 (4), p.1201-1208 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Argonaute-associated siRNAs and Piwi-associated piRNAs have overlapping roles in silencing mobile genetic elements in animals. In Caenorhabditis elegans, mutator (mut) class genes mediate siRNA-guided repression of transposons as well as exogenous RNAi, but their roles in endogenous RNA silencing pathways are not well-understood. To characterize the endogenous small RNAs dependent on mut class genes, small RNA populations from a null allele of mut-16 as well as a regulatory mut-16{mg461) allele that disables only somatic RNAi were subjected to deep sequencing. Additionally, each of the mut class genes was tested for a requirement in 26G siRNA pathways. The results indicate that mut-16 is an essential factor in multiple endogenous germline and somatic siRNA pathways involving several distinct Argonautes and RNAdependent RNA polymerases. The results also reveal essential roles for mut-2 and mut-7 in the ERGO-1 class 26G siRNA pathway and less critical roles for mut-8, mut-14, and mut-15. We show that transposons are hypersusceptible to mut-16-dependent silencing and identify a requirement for the siRNA machinery in piRNA biogenesis from Tel transposons. We also show that the somaspecific mut-16(mg461) mutant allele is present in multiple G elegans laboratory strains. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1018695108 |