An early diagnostic tool for diabetic neuropathy: Conduction velocity distribution

Diabetes is a metabolic disorder that affects much of the human population. As a secondary complication, diabetic neuropathy causes time‐dependent damage to peripheral nerves. In this study, experimental diabetes was induced by streptozotocin (STZ; 50 mg/kg intraperitoneally) in rats. Diabetic anima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Muscle & nerve 2011-02, Vol.43 (2), p.237-244
Hauptverfasser: Tuncer, Seckin, Dalkilic, Nizamettin, Esen, Haci Hasan, Avunduk, Mustafa Cihat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetes is a metabolic disorder that affects much of the human population. As a secondary complication, diabetic neuropathy causes time‐dependent damage to peripheral nerves. In this study, experimental diabetes was induced by streptozotocin (STZ; 50 mg/kg intraperitoneally) in rats. Diabetic animals were grouped into those with 2 or 4 weeks of diabetes, whereas a control group received only the STZ vehicle (0.1 M citrate). Sciatic nerves were dissected, and compound action potentials (CAPs) were recorded. Results deduced by conventional calculation carried less information when compared with conduction velocity distribution (CVD) obtained by a computer‐based mathematical model. Using the conventional approach, statistically significant changes were first seen in the fourth week of diabetes, whereas results deduced by CVD measurement could be seen in the second week. Consequently, the CVD calculation provides more information for the early diagnosis of neuropathies compared with classical conduction velocity measurements. Muscle Nerve 43: 237–244, 2011
ISSN:0148-639X
1097-4598
DOI:10.1002/mus.21837