The effects of the stromal cell-derived cyclooxygenase-2 metabolite prostaglandin E2 on the proliferation of colon cancer cells
It is well known that tumor-surrounding stromal tissues support tumor development through secreting soluble factors such as various cytokines, chemokines, and growth factors. It has also been suggested that tumor-associated fibroblast and immune cells have a high expression of cyclooxygenase-2 (COX-...
Gespeichert in:
Veröffentlicht in: | The Journal of pharmacology and experimental therapeutics 2011-02, Vol.336 (2), p.516-523 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that tumor-surrounding stromal tissues support tumor development through secreting soluble factors such as various cytokines, chemokines, and growth factors. It has also been suggested that tumor-associated fibroblast and immune cells have a high expression of cyclooxygenase-2 (COX-2) and produce and secrete several prostaglandins (PGs) to adjacent cancer tissues. From these findings, we assumed that COX-2 inhibition might have an anticancer effect on cancer cells even without COX-2 expression in COX-2-dependent mechanisms through blocking the effect of stroma-derived PGs. Here, because of the complex involvement of various factors in vivo, we investigated this possibility with an in vivo-mimicking model using a Transwell system. To test our hypothesis, we used COX-2-transfected cell lines as stromal cells in our model. When we cocultured cancer cells (LS174T cells without COX-2 expression) with COX-2-high stromal cells in the Transwell membrane system, we observed that the proliferation of cancer cells was promoted and vascular endothelial growth factor synthesis was up-regulated significantly. These effects were blocked completely by COX-2 inhibitors and phosphoinositide-3-kinase inhibitors and partially by the PG E(2) receptor 4 antagonist. Even if some cancer cells did not express COX-2, they were found to have expression of PG receptors and PG-related downstream signaling molecules associated with cell viability. Our observation suggests that these cells can be influenced by PGs derived from stromal tissues. These findings also suggest that COX-2 inhibitors can be used to control the interaction between cancer and surrounding stromal tissues and suppress the proliferation of cancer cells regardless of the expression of COX-2 in cancer cells. |
---|---|
ISSN: | 1521-0103 |
DOI: | 10.1124/jpet.110.173278 |