MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance
MicroRNAs (miRNAs) are small noncoding RNAs that have important roles in gene regulation. We have previously reported that activin receptor-like kinase 7 (ALK7) and its ligand, Nodal, induce apoptosis in human epithelial ovarian cancer cells. In this study, we examined the regulation of ALK7 by miRN...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2011-02, Vol.124 (3), p.359-368 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MicroRNAs (miRNAs) are small noncoding RNAs that have important roles in gene regulation. We have previously reported that activin receptor-like kinase 7 (ALK7) and its ligand, Nodal, induce apoptosis in human epithelial ovarian cancer cells. In this study, we examined the regulation of ALK7 by miRNAs and demonstrate that miR-376c targets ALK7. Ectopic expression of miR-376c significantly increased cell proliferation and survival, enhanced spheroid formation and blocked Nodal-induced apoptosis. Interestingly, overexpression of miR-376c blocked cisplatin-induced cell death, whereas anti-miR-376c enhanced the effect of cisplatin. These effects of miR-376c were partially compensated by the overexpression of ALK7. Moreover, in serous carcinoma samples taken from ovarian cancer patients who responded well to chemotherapy, strong ALK7 staining and low miR-376c expression was detected. By contrast, ALK7 expression was weak and miR-376c levels were high in samples from patients who responded poorly to chemotherapy. Finally, treatment with cisplatin led to an increase in expression of mRNA encoding Nodal and ALK7 but a decrease in miR-376c levels. Taken together, these results demonstrate that the Nodal-ALK7 pathway is involved in cisplatin-induced cell death in ovarian cancer cells and that miR-376c enhances proliferation, survival and chemoresistance by targeting, at least in part, ALK7. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.072223 |