Pre-steady-state kinetics of intermediate formation in the deuteroferriheme-hydrogen peroxide system
The pH dependence of formation of a peroxidatic intermediate from the reaction of deuteroferriheme with hydrogen peroxide has been determined for the region pH 8.7-10.1 from stopped-flow kinetic studies in which absorbancy changes are observed at heme monomer-dimer isosbestic points. Results are int...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1977-08, Vol.16 (16), p.3543-3549 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pH dependence of formation of a peroxidatic intermediate from the reaction of deuteroferriheme with hydrogen peroxide has been determined for the region pH 8.7-10.1 from stopped-flow kinetic studies in which absorbancy changes are observed at heme monomer-dimer isosbestic points. Results are interpreted primarily in terms of the attainment of double "steady-state" concentrations of Michaelis-Menten complex I and peroxidatic intermediate I'. A linear correlation of observed first-order rate constants with alpha, the degree of dissociation of heme dimer, has been demonstrated and nonzero intercepts are obtained. Slopes and intercepts show a linear logarithmic dependence on pH which is interpreted in terms of HO2-participation both in the formation and subsequent (catalatic) decomposition of a peroxidatically active intermediate. General acid catalysis of intermediate formation is indicated from studies in phosphate, arsenate, and citrate buffer at pH 7.4-9.3. It is suggested that such catalysis may be responsible for anomalously high rates of H2O2 decomposition previously observed in phosphate buffer solution. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00635a007 |