Crowd synchrony and quorum sensing in delay-coupled lasers

Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2010-12, Vol.105 (26), p.264101-264101, Article 264101
Hauptverfasser: Zamora-Munt, Jordi, Masoller, C, Garcia-Ojalvo, Jordi, Roy, Rajarshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large enough. Here we consider a situation in which the transmission of information between the system components and the coupling pool is not instantaneous. To that end, we model a system of semiconductor lasers optically coupled to a central laser with a delay. Our results show that, even though the lasers are nonidentical due to their distinct optical frequencies, zero-lag synchronization arises. By changing a system parameter, we can switch between two different types of synchronization transition. The dependence of the transition with respect to the delay-coupling parameters is studied.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.105.264101