Theory of spike timing-based neural classifiers

We study the computational capacity of a model neuron, the tempotron, which classifies sequences of spikes by linear-threshold operations. We use statistical mechanics and extreme value theory to derive the capacity of the system in random classification tasks. In contrast with its static analog, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2010-11, Vol.105 (21), p.218102-218102, Article 218102
Hauptverfasser: Rubin, Ran, Monasson, Rémi, Sompolinsky, Haim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the computational capacity of a model neuron, the tempotron, which classifies sequences of spikes by linear-threshold operations. We use statistical mechanics and extreme value theory to derive the capacity of the system in random classification tasks. In contrast with its static analog, the perceptron, the tempotron's solutions space consists of a large number of small clusters of weight vectors. The capacity of the system per synapse is finite in the large size limit and weakly diverges with the stimulus duration relative to the membrane and synaptic time constants.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.105.218102