Transfer matrices and circuit representation for the semiclassical traces of the baker map

Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices associated with the baker map and the symmetry-reflected baker map (the latter happens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-10, Vol.82 (4 Pt 2), p.046220-046220, Article 046220
Hauptverfasser: Carlo, Gabriel G, Vallejos, Raúl O, Abreu, Rômulo F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 046220
container_issue 4 Pt 2
container_start_page 046220
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 82
creator Carlo, Gabriel G
Vallejos, Raúl O
Abreu, Rômulo F
description Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices associated with the baker map and the symmetry-reflected baker map (the latter happens to be unitary but the former is not). In both cases simple quantum-circuit representations are obtained, which exhibit the typical structure of qubit quantum bakers. In the case of the baker map it is shown that nonunitarity is restricted to a one-qubit operator (close to a Hadamard gate for some parameter values). In a suitable continuum limit we recover the already known infinite-dimensional transfer operator. We devise truncation schemes allowing the calculation of long-time traces in regimes where the direct summation of Gutzwiller's formula is impossible. Some aspects of the long-time divergence of the semiclassical traces are also discussed.
doi_str_mv 10.1103/PhysRevE.82.046220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_840355342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>840355342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-5b385f95362020d3da79a0b68e80caba042fdc4051eb02d53935a1f8fc7ee1ce3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EolD4ARYoO1YpY0-cuEtUlYdUCYTKhk3kOGM1kBe2g9S_p09WM9Lcc6U5jN1wmHAOeP-2Wvt3-p1PlJhAkgoBJ-yCSwmxwCw93e44jTGTcsQuvf8CQIEqOWcjwQUCZuqCfS6dbr0lFzU6uMqQj3RbRqZyZqhC5Kh35KkNOlRdG9nORWFFkaemMrX2vjK6joLTW66zu1uhv3dt_RU7s7r2dH2YY_bxOF_OnuPF69PL7GERG0zSEMsClbRTiakAASWWOptqKFJFCowuNCTCliYByakAUW5eQqm5VdZkRNwQjtndvrd33c9APuRN5Q3VtW6pG3yuEkApMRGbpNgnjeu8d2Tz3lWNduucQ75Vmh-V5krke6Ub6PZQPxQNlf_I0SH-AUMgdO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840355342</pqid></control><display><type>article</type><title>Transfer matrices and circuit representation for the semiclassical traces of the baker map</title><source>American Physical Society Journals</source><creator>Carlo, Gabriel G ; Vallejos, Raúl O ; Abreu, Rômulo F</creator><creatorcontrib>Carlo, Gabriel G ; Vallejos, Raúl O ; Abreu, Rômulo F</creatorcontrib><description>Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices associated with the baker map and the symmetry-reflected baker map (the latter happens to be unitary but the former is not). In both cases simple quantum-circuit representations are obtained, which exhibit the typical structure of qubit quantum bakers. In the case of the baker map it is shown that nonunitarity is restricted to a one-qubit operator (close to a Hadamard gate for some parameter values). In a suitable continuum limit we recover the already known infinite-dimensional transfer operator. We devise truncation schemes allowing the calculation of long-time traces in regimes where the direct summation of Gutzwiller's formula is impossible. Some aspects of the long-time divergence of the semiclassical traces are also discussed.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.82.046220</identifier><identifier>PMID: 21230378</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-10, Vol.82 (4 Pt 2), p.046220-046220, Article 046220</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-5b385f95362020d3da79a0b68e80caba042fdc4051eb02d53935a1f8fc7ee1ce3</citedby><cites>FETCH-LOGICAL-c346t-5b385f95362020d3da79a0b68e80caba042fdc4051eb02d53935a1f8fc7ee1ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21230378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlo, Gabriel G</creatorcontrib><creatorcontrib>Vallejos, Raúl O</creatorcontrib><creatorcontrib>Abreu, Rômulo F</creatorcontrib><title>Transfer matrices and circuit representation for the semiclassical traces of the baker map</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices associated with the baker map and the symmetry-reflected baker map (the latter happens to be unitary but the former is not). In both cases simple quantum-circuit representations are obtained, which exhibit the typical structure of qubit quantum bakers. In the case of the baker map it is shown that nonunitarity is restricted to a one-qubit operator (close to a Hadamard gate for some parameter values). In a suitable continuum limit we recover the already known infinite-dimensional transfer operator. We devise truncation schemes allowing the calculation of long-time traces in regimes where the direct summation of Gutzwiller's formula is impossible. Some aspects of the long-time divergence of the semiclassical traces are also discussed.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EolD4ARYoO1YpY0-cuEtUlYdUCYTKhk3kOGM1kBe2g9S_p09WM9Lcc6U5jN1wmHAOeP-2Wvt3-p1PlJhAkgoBJ-yCSwmxwCw93e44jTGTcsQuvf8CQIEqOWcjwQUCZuqCfS6dbr0lFzU6uMqQj3RbRqZyZqhC5Kh35KkNOlRdG9nORWFFkaemMrX2vjK6joLTW66zu1uhv3dt_RU7s7r2dH2YY_bxOF_OnuPF69PL7GERG0zSEMsClbRTiakAASWWOptqKFJFCowuNCTCliYByakAUW5eQqm5VdZkRNwQjtndvrd33c9APuRN5Q3VtW6pG3yuEkApMRGbpNgnjeu8d2Tz3lWNduucQ75Vmh-V5krke6Ub6PZQPxQNlf_I0SH-AUMgdO8</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Carlo, Gabriel G</creator><creator>Vallejos, Raúl O</creator><creator>Abreu, Rômulo F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Transfer matrices and circuit representation for the semiclassical traces of the baker map</title><author>Carlo, Gabriel G ; Vallejos, Raúl O ; Abreu, Rômulo F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-5b385f95362020d3da79a0b68e80caba042fdc4051eb02d53935a1f8fc7ee1ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Carlo, Gabriel G</creatorcontrib><creatorcontrib>Vallejos, Raúl O</creatorcontrib><creatorcontrib>Abreu, Rômulo F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlo, Gabriel G</au><au>Vallejos, Raúl O</au><au>Abreu, Rômulo F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transfer matrices and circuit representation for the semiclassical traces of the baker map</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2010-10</date><risdate>2010</risdate><volume>82</volume><issue>4 Pt 2</issue><spage>046220</spage><epage>046220</epage><pages>046220-046220</pages><artnum>046220</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices associated with the baker map and the symmetry-reflected baker map (the latter happens to be unitary but the former is not). In both cases simple quantum-circuit representations are obtained, which exhibit the typical structure of qubit quantum bakers. In the case of the baker map it is shown that nonunitarity is restricted to a one-qubit operator (close to a Hadamard gate for some parameter values). In a suitable continuum limit we recover the already known infinite-dimensional transfer operator. We devise truncation schemes allowing the calculation of long-time traces in regimes where the direct summation of Gutzwiller's formula is impossible. Some aspects of the long-time divergence of the semiclassical traces are also discussed.</abstract><cop>United States</cop><pmid>21230378</pmid><doi>10.1103/PhysRevE.82.046220</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-10, Vol.82 (4 Pt 2), p.046220-046220, Article 046220
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_840355342
source American Physical Society Journals
title Transfer matrices and circuit representation for the semiclassical traces of the baker map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transfer%20matrices%20and%20circuit%20representation%20for%20the%20semiclassical%20traces%20of%20the%20baker%20map&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Carlo,%20Gabriel%20G&rft.date=2010-10&rft.volume=82&rft.issue=4%20Pt%202&rft.spage=046220&rft.epage=046220&rft.pages=046220-046220&rft.artnum=046220&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.82.046220&rft_dat=%3Cproquest_cross%3E840355342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=840355342&rft_id=info:pmid/21230378&rfr_iscdi=true