Transfer matrices and circuit representation for the semiclassical traces of the baker map
Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices associated with the baker map and the symmetry-reflected baker map (the latter happens...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-10, Vol.82 (4 Pt 2), p.046220-046220, Article 046220 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Because of a formal equivalence with the partition function of an Ising chain, the semiclassical traces of the quantum baker map can be calculated using the transfer-matrix method. We analyze the transfer matrices associated with the baker map and the symmetry-reflected baker map (the latter happens to be unitary but the former is not). In both cases simple quantum-circuit representations are obtained, which exhibit the typical structure of qubit quantum bakers. In the case of the baker map it is shown that nonunitarity is restricted to a one-qubit operator (close to a Hadamard gate for some parameter values). In a suitable continuum limit we recover the already known infinite-dimensional transfer operator. We devise truncation schemes allowing the calculation of long-time traces in regimes where the direct summation of Gutzwiller's formula is impossible. Some aspects of the long-time divergence of the semiclassical traces are also discussed. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.82.046220 |