Hydrogen as a Selective Antioxidant: A Review of Clinical and Experimental Studies

Oxidative stress is implicated in the pathogenesis of many diseases; however, currently used antioxidants have a high toxicity that constrains administration to a narrow window of therapeutic dosage. There is a clear need for more effective and safer antioxidants. Diatomic hydrogen (H2) was proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of international medical research 2010-12, Vol.38 (6), p.1893-1903
Hauptverfasser: Hong, Y, Chen, S, Zhang, J-M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidative stress is implicated in the pathogenesis of many diseases; however, currently used antioxidants have a high toxicity that constrains administration to a narrow window of therapeutic dosage. There is a clear need for more effective and safer antioxidants. Diatomic hydrogen (H2) was proposed as a novel antioxidant that selectively reduces levels of toxic reactive-oxygen species. Recently, many studies have reported that H2 (inhaled or orally ingested, typically as approximately 0.8 mM H2-saturated water), can exert beneficial effects in diverse animal models of ischaemia–reperfusion injury, and inflammatory and neurological disease. In the clinic, oral administration of H2-saturated water is reported to improve lipid and glucose metabolism in subjects with diabetes or impaired glucose tolerance; promising results have also been obtained in reducing inflammation in haemodialysis patients and treating metabolic syndrome. These studies suggest H2 has selective antioxidant properties, and can exert antiapoptotic, anti-inflammatory and antiallergy effects. This review summarizes recent research findings and mechanisms concerning the therapeutic potential of H2.
ISSN:0300-0605
1473-2300
DOI:10.1177/147323001003800602