Computer rejection of EEG artifact. II. Contamination by drowsiness

As part of an effort to automatically measure a background EEG baseline against which changes due to therapy or experimental manipulations may be measured, algorithms to detect EEG patterns associated with drowsiness have been developed and objectively evaluated. The decision of drowsiness is tentat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroencephalography and clinical neurophysiology 1977, Vol.43 (1), p.31-42
Hauptverfasser: Gevins, A.S, Zeitlin, G.M, Ancoli, S, Yeager, C.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As part of an effort to automatically measure a background EEG baseline against which changes due to therapy or experimental manipulations may be measured, algorithms to detect EEG patterns associated with drowsiness have been developed and objectively evaluated. The decision of drowsiness is tentatively based upon changes in simple signal features, including increased ratios of both delta-band to alpha-band and theta-band to alpha-band spectral intensity as compared to thresholds automatically determined from a waking calibration period. Several heuristic criteria are then required to reach a final decision. Thirty-one normal and abnormal, 3-minute, 8-channel clinical EEG recordings containing drowsiness were scored by 5 expert scorers. Out of a total of 106 events labeled drowsy by at least one judge, 85 were found by a consensus of 3 or more of the 5 experts. On the 20 recordings not used for training the decision thresholds (testing data set), the system found 84% for the 85 episodes found by the consensus, and 89% of the episodes found by all 5 scorers. Only one event was found by the system which was not found by any scorer, or which did not border on a consensus-defined episode of drowsiness. This performance is adequate to justify inclusion of these algorithms into a previously described real time EEG analysis system, ADI-EEG, allowing integration of the decisions of the separate subsystems for detection of artifact, sharp transients and drowsiness. Dans le cadre d'un projet de mesure automatique du rythme de fond EEG en fonction duquel les modifications dues à la thérapeutique ou à des manipulations expérimentales peuvent être mesurées, des efforts ont été faits pour développer des algorithmes permettant de déoeler et d'évaluer objectivement les patterns EEG liés à la somnolence. La décision de somnolence est hypothétiquement basée sur des modifications de signaux simples, comportant l'augmentation des rapports d'intensité spectrale delta/alpha et théta/alpha, comparée à des seuils déterminés de façon automatique pour une période d'étalonnage au cours de la veille. Plusieurs critères heuristiques ont été ainsi nécessaires pour aboutir à une décision finale. Trente et un enregistrements EEG normaux et anormaux, effectués sur 8 chaînes durant 3 min, et comportant de la somnolance ont été classés par 5 juges experts. D'un ensemble de 106 évènements catalogués somnolence par au moins 1 juge, 85 ont obtenu le consensus de 3 ou plus des 5 experts. Sur 2
ISSN:0013-4694
1872-6380
DOI:10.1016/0013-4694(77)90192-4