Organic Ligand-Free Alkylation of Amines, Carboxamides, Sulfonamides, and Ketones by Using Alcohols Catalyzed by Heterogeneous Ag/Mo Oxides

Complicated and expensive organic ligands are normally essential in fine chemical synthesis at preparative or industrial levels. The synthesis of fine chemicals by using heterogeneous catalyst systems without additive organic ligand is highly desirable but severely limited due to their poor generali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2011-01, Vol.17 (3), p.1021-1028
Hauptverfasser: Cui, Xinjiang, Zhang, Yan, Shi, Feng, Deng, Youquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complicated and expensive organic ligands are normally essential in fine chemical synthesis at preparative or industrial levels. The synthesis of fine chemicals by using heterogeneous catalyst systems without additive organic ligand is highly desirable but severely limited due to their poor generality and rigorous reaction conditions. Here, we show the results of carbon–nitrogen or carbon–carbon bond formation catalyzed by an Ag/Mo hybrid material with specific Ag6Mo10O33 crystal structure. 48 nitrogen‐ or oxygen‐containing compounds, that is, amines, carboxamides, sulfonamides, and ketones, were successfully synthesized through a borrowing‐hydrogen mechanism. Up to 99 % isolated yields were obtained under relatively mild conditions without additive organic ligand. The catalytic process shows promise for the efficient and economic synthesis of amine, carboxamide, sulfonamide, and ketone derivatives because of the simplicity of the system and ease of operation. Ag/Mo hybrid materials with a specific Ag6Mo10O33 crystal structure is an active catalyst for the coupling reactions of amines, carboxamides, sulfonamides, and ketones with alcohols (see scheme). 48 nitrogen‐ or oxygen‐containing compounds with up to 99 % isolated yields were obtained under relatively mild conditions without additive organic ligands.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201001915