Gene regulation by nucleosome positioning

To achieve high compaction, most genomic DNA in eukaryotes is incorporated into nucleosomes; however, regulatory factors and transcriptional machinery must gain access to chromatin to extract genetic information. This conflict is partially resolved by a particular arrangement of nucleosome locations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in genetics 2010-11, Vol.26 (11), p.476-483
Hauptverfasser: Bai, Lu, Morozov, Alexandre V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To achieve high compaction, most genomic DNA in eukaryotes is incorporated into nucleosomes; however, regulatory factors and transcriptional machinery must gain access to chromatin to extract genetic information. This conflict is partially resolved by a particular arrangement of nucleosome locations on the genome. Across all eukaryotic species, promoters and other regulatory sequences are more nucleosome-depleted, whereas transcribed regions tend to be occupied with well-positioned, high-density nucleosomal arrays. This nucleosome positioning pattern, as well as its dynamic regulation, facilitates the access of transcription factors to their target sites and plays a crucial role in determining the transcription level, cell-to-cell variation and activation or repression dynamics.
ISSN:0168-9525
DOI:10.1016/j.tig.2010.08.003