Incorporating higher moments into value-at-risk forecasting

Value‐at‐risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram‐Charlier expansion (GCE) augmenting the stand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2010-09, Vol.29 (6), p.523-535
Hauptverfasser: Polanski, Arnold, Stoja, Evarist
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Value‐at‐risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram‐Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time‐varying higher‐moments models. Copyright © 2009 John Wiley & Sons, Ltd.
ISSN:0277-6693
1099-131X
DOI:10.1002/for.1155