Latent Variable Models for Mixed Discrete and Continuous Outcomes

We propose a latent variable model for mixed discrete and continuous outcomes. The model accommodates any mixture of outcomes from an exponential family and allows for arbitrary covariate effects, as well as direct modelling of covariates on the latent variable. An EM algorithm is proposed for param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Methodological Methodological, 1997, Vol.59 (3), p.667-678
Hauptverfasser: Sammel, Mary Dupuis, Ryan, Louise M., Legler, Julie M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a latent variable model for mixed discrete and continuous outcomes. The model accommodates any mixture of outcomes from an exponential family and allows for arbitrary covariate effects, as well as direct modelling of covariates on the latent variable. An EM algorithm is proposed for parameter estimation and estimates of the latent variables are produced as a by-product of the analysis. A generalized likelihood ratio test can be used to test the significance of covariates affecting the latent outcomes. This method is applied to birth defects data, where the outcomes of interest are continuous measures of size and binary indicators of minor physical anomalies. Infants who were exposed in utero to anticonvulsant medications are compared with controls.
ISSN:1369-7412
0035-9246
1467-9868
DOI:10.1111/1467-9868.00090