Binding of nucleotides to purified coupling factor-latent ATPase from Mycobacterium phlei

Binding studies of various nucleotides to the purified coupling factor-latent ATPase from Mycobacterium phlei have been carried out using gel filtration, equilibrium dialysis, and ultrafiltration methods. The purified latent ATPase binds 3 mol of ADP per mol of the enzyme with an apparent dissociati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1977-02, Vol.252 (3), p.1084-1091
Hauptverfasser: Lee, S H, Kalra, V K, Ritz, C J, Brodie, A F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Binding studies of various nucleotides to the purified coupling factor-latent ATPase from Mycobacterium phlei have been carried out using gel filtration, equilibrium dialysis, and ultrafiltration methods. The purified latent ATPase binds 3 mol of ADP per mol of the enzyme with an apparent dissociation constant of 68 muM. Binding of nucleotides occurred in the decreasing order: ADP, epsilon-ATP, epsilon-ADP, UDP, adenyl-5'-yl imidodiphosphate (AMP-P(NH)P), IDP, and adenosine 5'-(alpha,beta-methylene)diphosphate (AdoP(CH2)P). AMP-P(NH)P inhibits both soluble (Ki = 77 muM) and membrane-bound latent ATPase activity. However, AMP-P(NH)P does not affect oxidative phosphorylation in membrane vesicles of M. phlei. AMP-P(NH)P exhibits one binding site per molecule of the enzyme with a dissociation constant of 71 muM. After trypsin treatment of the enzyme, the binding of ADP decreases 35%, while AMP-P(NH)P binding remains unchanged. Moreover, AMP-P(NH)P binding was not displaced by ADP. Studies with sulfhydryl agents showed that, in contrast to AMP-P(NH)P, binding of at least 1 mol of ADP requires the participation of sulfhydryl groups. The results indicate that AMP-P(NH)P and ADP do not share a common binding site and that the latent ATPase enzyme has separate sites for ATP hydrolysis and ATP synthesis.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)75209-0