Sodium- and potassium-activated adenosine triphosphatase of the nasal salt gland of the duck (Anas platyrhynchos). purification, characterization, and NH2-terminal amino acid sequence of the phosphorylating polypeptide

Sodium- and potassium-activated adenosine triphosphatase (NaK-ATPase) was purified from nasal salt glands of the duck (Anas platyrhynchos). Enzyme of specific activity 2,000 to 2,300 mumol of Pi/mg/hour was routinely obtained by sodium dodecyl sulfate treatment of a microsomal fraction of gland homo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1976-07, Vol.251 (14), p.4365-4371
Hauptverfasser: Hopkins, B.E, Wagner, H. Jr, Smith, T.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodium- and potassium-activated adenosine triphosphatase (NaK-ATPase) was purified from nasal salt glands of the duck (Anas platyrhynchos). Enzyme of specific activity 2,000 to 2,300 mumol of Pi/mg/hour was routinely obtained by sodium dodecyl sulfate treatment of a microsomal fraction of gland homogenate in the presence of 3 mM ATP followed by pelleting of the enzyme through a sucrose density gradient. Purified NaK-ATPase was stable for over 3 months at -20 degree. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography purified NaK-ATPase was shown to contain two polypeptide chains of molecular weight 94,000 and 60,000, the smaller of which was a glycoprotein. Purified enzyme of activity 2,300 mumol of Pi/mg/hour bound 3,600 pmol of ouabain/mg of enzyme protein. Reaction with [gamma-32P]ATP in the presence of Mg2+ and Na+ gave 7,025 pmol of acyl phosphate/mg of enzyme protein. The turnover number calculated from phosphorylation data was 5,460 min-1. Amino acid analysis of the polypeptide components of duck salt gland enzyme after separation by gel filtration chromatography in sodium dodecyl sulfate demonstrated strong compositional homology with highly purified NaK-ATPase preparations from other organs and species. The NH2-terminal amino acid of the 94,000-dalton component was glycine and of the 60,000-dalton component, alanine. With a combination of manual sequencing and automated Edman degradation, the NH2-terminal amino acid sequence of the 94,00-dalton catalytic subunit was found to be Gly-Arg-Asn-Lys-Tyr-Glu-Thr-Thr-Ala-()-Ser-Glu.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)33305-7