Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies

A modified continuum model of electrically actuated nanobeams is presented by incorporating surface elasticity in this paper. The classical beam theory is adopted to model the bulk, while the bulk stresses along the surfaces of the bulk substrate are required to satisfy the surface balance equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2011-02, Vol.35 (2), p.941-951
Hauptverfasser: Fu, Yiming, Zhang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A modified continuum model of electrically actuated nanobeams is presented by incorporating surface elasticity in this paper. The classical beam theory is adopted to model the bulk, while the bulk stresses along the surfaces of the bulk substrate are required to satisfy the surface balance equations of the continuum surface elasticity. On the basis of this modified beam theory the governing equation of an electrically actuated nanobeam is derived and a powerful technology, analog equation method (AEM) is applied to solve this complex problem. Beams made from two materials: aluminum and silicon are chosen as examples. The numerical results show that the pull-in phenomena in electrically actuated nanobeams are size-dependent. The effects of the surface energies on the static and dynamic responses, pull-in voltage and pull-in time are discussed.
ISSN:0307-904X
DOI:10.1016/j.apm.2010.07.051