Simultaneous feature selection and classification using kernel-penalized support vector machines
We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel...
Gespeichert in:
Veröffentlicht in: | Information sciences 2011, Vol.181 (1), p.115-128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | Information sciences |
container_volume | 181 |
creator | Maldonado, Sebastián Weber, Richard Basak, Jayanta |
description | We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features. |
doi_str_mv | 10.1016/j.ins.2010.08.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831196290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510004287</els_id><sourcerecordid>831196290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhF2AxPH4AXTuqBLWSZw7iwqdeEknUQC1cZw1-HCcYCcnwa_HR6ipVjuaGWk-Qs4Z5AxYfbnNrY95AemHVQ7V8oAsAArIoOD8iBzHuAVIcl0vyOuT7SY3Ko_9FKlBNU4BaUSHerS9p8q3VDsVozVWq19pita_0Q8MHl02oFfOfmNL4zQMfRjpLiX7QDul363HeEoOjXIRz_7uCXm5vXle32ebx7uH9fUm06XgY8YbEFXdcqi1aMpG81qYZQtYF4IZIWpEZoqqaLRpddlwBGAFXwrBqqpUJcfyhFzMvUPoPyeMo-xs1OjcPE2uSsZEaoPkZLNThz7GgEYOwXYqfEkGcg9QbmUCKPcAJaxkIpUyV3MG04SdxSCjtug1tjakvbLt7T_pH8xCfRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831196290</pqid></control><display><type>article</type><title>Simultaneous feature selection and classification using kernel-penalized support vector machines</title><source>Elsevier ScienceDirect Journals</source><creator>Maldonado, Sebastián ; Weber, Richard ; Basak, Jayanta</creator><creatorcontrib>Maldonado, Sebastián ; Weber, Richard ; Basak, Jayanta</creatorcontrib><description>We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.</description><identifier>ISSN: 0020-0255</identifier><identifier>DOI: 10.1016/j.ins.2010.08.047</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Anisotropy ; Benchmarking ; Classification ; Classifiers ; Construction equipment ; Embedded methods ; Feature selection ; Formulations ; Kernels ; Mathematical programming ; Support vector machines</subject><ispartof>Information sciences, 2011, Vol.181 (1), p.115-128</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</citedby><cites>FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025510004287$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Maldonado, Sebastián</creatorcontrib><creatorcontrib>Weber, Richard</creatorcontrib><creatorcontrib>Basak, Jayanta</creatorcontrib><title>Simultaneous feature selection and classification using kernel-penalized support vector machines</title><title>Information sciences</title><description>We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.</description><subject>Anisotropy</subject><subject>Benchmarking</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Construction equipment</subject><subject>Embedded methods</subject><subject>Feature selection</subject><subject>Formulations</subject><subject>Kernels</subject><subject>Mathematical programming</subject><subject>Support vector machines</subject><issn>0020-0255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhF2AxPH4AXTuqBLWSZw7iwqdeEknUQC1cZw1-HCcYCcnwa_HR6ipVjuaGWk-Qs4Z5AxYfbnNrY95AemHVQ7V8oAsAArIoOD8iBzHuAVIcl0vyOuT7SY3Ko_9FKlBNU4BaUSHerS9p8q3VDsVozVWq19pita_0Q8MHl02oFfOfmNL4zQMfRjpLiX7QDul363HeEoOjXIRz_7uCXm5vXle32ebx7uH9fUm06XgY8YbEFXdcqi1aMpG81qYZQtYF4IZIWpEZoqqaLRpddlwBGAFXwrBqqpUJcfyhFzMvUPoPyeMo-xs1OjcPE2uSsZEaoPkZLNThz7GgEYOwXYqfEkGcg9QbmUCKPcAJaxkIpUyV3MG04SdxSCjtug1tjakvbLt7T_pH8xCfRo</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Maldonado, Sebastián</creator><creator>Weber, Richard</creator><creator>Basak, Jayanta</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Simultaneous feature selection and classification using kernel-penalized support vector machines</title><author>Maldonado, Sebastián ; Weber, Richard ; Basak, Jayanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Benchmarking</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Construction equipment</topic><topic>Embedded methods</topic><topic>Feature selection</topic><topic>Formulations</topic><topic>Kernels</topic><topic>Mathematical programming</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maldonado, Sebastián</creatorcontrib><creatorcontrib>Weber, Richard</creatorcontrib><creatorcontrib>Basak, Jayanta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maldonado, Sebastián</au><au>Weber, Richard</au><au>Basak, Jayanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous feature selection and classification using kernel-penalized support vector machines</atitle><jtitle>Information sciences</jtitle><date>2011</date><risdate>2011</risdate><volume>181</volume><issue>1</issue><spage>115</spage><epage>128</epage><pages>115-128</pages><issn>0020-0255</issn><abstract>We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.08.047</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2011, Vol.181 (1), p.115-128 |
issn | 0020-0255 |
language | eng |
recordid | cdi_proquest_miscellaneous_831196290 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropy Benchmarking Classification Classifiers Construction equipment Embedded methods Feature selection Formulations Kernels Mathematical programming Support vector machines |
title | Simultaneous feature selection and classification using kernel-penalized support vector machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20feature%20selection%20and%20classification%20using%20kernel-penalized%20support%20vector%20machines&rft.jtitle=Information%20sciences&rft.au=Maldonado,%20Sebasti%C3%A1n&rft.date=2011&rft.volume=181&rft.issue=1&rft.spage=115&rft.epage=128&rft.pages=115-128&rft.issn=0020-0255&rft_id=info:doi/10.1016/j.ins.2010.08.047&rft_dat=%3Cproquest_cross%3E831196290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831196290&rft_id=info:pmid/&rft_els_id=S0020025510004287&rfr_iscdi=true |