Simultaneous feature selection and classification using kernel-penalized support vector machines

We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2011, Vol.181 (1), p.115-128
Hauptverfasser: Maldonado, Sebastián, Weber, Richard, Basak, Jayanta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 115
container_title Information sciences
container_volume 181
creator Maldonado, Sebastián
Weber, Richard
Basak, Jayanta
description We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.
doi_str_mv 10.1016/j.ins.2010.08.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831196290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510004287</els_id><sourcerecordid>831196290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhF2AxPH4AXTuqBLWSZw7iwqdeEknUQC1cZw1-HCcYCcnwa_HR6ipVjuaGWk-Qs4Z5AxYfbnNrY95AemHVQ7V8oAsAArIoOD8iBzHuAVIcl0vyOuT7SY3Ko_9FKlBNU4BaUSHerS9p8q3VDsVozVWq19pita_0Q8MHl02oFfOfmNL4zQMfRjpLiX7QDul363HeEoOjXIRz_7uCXm5vXle32ebx7uH9fUm06XgY8YbEFXdcqi1aMpG81qYZQtYF4IZIWpEZoqqaLRpddlwBGAFXwrBqqpUJcfyhFzMvUPoPyeMo-xs1OjcPE2uSsZEaoPkZLNThz7GgEYOwXYqfEkGcg9QbmUCKPcAJaxkIpUyV3MG04SdxSCjtug1tjakvbLt7T_pH8xCfRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831196290</pqid></control><display><type>article</type><title>Simultaneous feature selection and classification using kernel-penalized support vector machines</title><source>Elsevier ScienceDirect Journals</source><creator>Maldonado, Sebastián ; Weber, Richard ; Basak, Jayanta</creator><creatorcontrib>Maldonado, Sebastián ; Weber, Richard ; Basak, Jayanta</creatorcontrib><description>We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.</description><identifier>ISSN: 0020-0255</identifier><identifier>DOI: 10.1016/j.ins.2010.08.047</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Anisotropy ; Benchmarking ; Classification ; Classifiers ; Construction equipment ; Embedded methods ; Feature selection ; Formulations ; Kernels ; Mathematical programming ; Support vector machines</subject><ispartof>Information sciences, 2011, Vol.181 (1), p.115-128</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</citedby><cites>FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025510004287$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Maldonado, Sebastián</creatorcontrib><creatorcontrib>Weber, Richard</creatorcontrib><creatorcontrib>Basak, Jayanta</creatorcontrib><title>Simultaneous feature selection and classification using kernel-penalized support vector machines</title><title>Information sciences</title><description>We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.</description><subject>Anisotropy</subject><subject>Benchmarking</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Construction equipment</subject><subject>Embedded methods</subject><subject>Feature selection</subject><subject>Formulations</subject><subject>Kernels</subject><subject>Mathematical programming</subject><subject>Support vector machines</subject><issn>0020-0255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhF2AxPH4AXTuqBLWSZw7iwqdeEknUQC1cZw1-HCcYCcnwa_HR6ipVjuaGWk-Qs4Z5AxYfbnNrY95AemHVQ7V8oAsAArIoOD8iBzHuAVIcl0vyOuT7SY3Ko_9FKlBNU4BaUSHerS9p8q3VDsVozVWq19pita_0Q8MHl02oFfOfmNL4zQMfRjpLiX7QDul363HeEoOjXIRz_7uCXm5vXle32ebx7uH9fUm06XgY8YbEFXdcqi1aMpG81qYZQtYF4IZIWpEZoqqaLRpddlwBGAFXwrBqqpUJcfyhFzMvUPoPyeMo-xs1OjcPE2uSsZEaoPkZLNThz7GgEYOwXYqfEkGcg9QbmUCKPcAJaxkIpUyV3MG04SdxSCjtug1tjakvbLt7T_pH8xCfRo</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Maldonado, Sebastián</creator><creator>Weber, Richard</creator><creator>Basak, Jayanta</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Simultaneous feature selection and classification using kernel-penalized support vector machines</title><author>Maldonado, Sebastián ; Weber, Richard ; Basak, Jayanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-5b0946d506c9b3bc569f7d0e6291f996ee1f242bcfdc3b5e001257991443a35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anisotropy</topic><topic>Benchmarking</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Construction equipment</topic><topic>Embedded methods</topic><topic>Feature selection</topic><topic>Formulations</topic><topic>Kernels</topic><topic>Mathematical programming</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maldonado, Sebastián</creatorcontrib><creatorcontrib>Weber, Richard</creatorcontrib><creatorcontrib>Basak, Jayanta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maldonado, Sebastián</au><au>Weber, Richard</au><au>Basak, Jayanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous feature selection and classification using kernel-penalized support vector machines</atitle><jtitle>Information sciences</jtitle><date>2011</date><risdate>2011</risdate><volume>181</volume><issue>1</issue><spage>115</spage><epage>128</epage><pages>115-128</pages><issn>0020-0255</issn><abstract>We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.08.047</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2011, Vol.181 (1), p.115-128
issn 0020-0255
language eng
recordid cdi_proquest_miscellaneous_831196290
source Elsevier ScienceDirect Journals
subjects Anisotropy
Benchmarking
Classification
Classifiers
Construction equipment
Embedded methods
Feature selection
Formulations
Kernels
Mathematical programming
Support vector machines
title Simultaneous feature selection and classification using kernel-penalized support vector machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20feature%20selection%20and%20classification%20using%20kernel-penalized%20support%20vector%20machines&rft.jtitle=Information%20sciences&rft.au=Maldonado,%20Sebasti%C3%A1n&rft.date=2011&rft.volume=181&rft.issue=1&rft.spage=115&rft.epage=128&rft.pages=115-128&rft.issn=0020-0255&rft_id=info:doi/10.1016/j.ins.2010.08.047&rft_dat=%3Cproquest_cross%3E831196290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831196290&rft_id=info:pmid/&rft_els_id=S0020025510004287&rfr_iscdi=true