Simultaneous feature selection and classification using kernel-penalized support vector machines

We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2011, Vol.181 (1), p.115-128
Hauptverfasser: Maldonado, Sebastián, Weber, Richard, Basak, Jayanta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an embedded method that simultaneously selects relevant features during classifier construction by penalizing each feature’s use in the dual formulation of support vector machines (SVM). This approach called kernel-penalized SVM (KP-SVM) optimizes the shape of an anisotropic RBF Kernel eliminating features that have low relevance for the classifier. Additionally, KP-SVM employs an explicit stopping condition, avoiding the elimination of features that would negatively affect the classifier’s performance. We performed experiments on four real-world benchmark problems comparing our approach with well-known feature selection techniques. KP-SVM outperformed the alternative approaches and determined consistently fewer relevant features.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2010.08.047