Global existence of weak solutions for a shallow water equation
A nonlinear shallow water equation, which includes the famous Camassa–Holm (CH) and Degasperis–Procesi (DP) equations as special cases, is investigated. Provided that initial value u 0 ∈ H s ( 1 ≤ s ≤ 3 2 ) , u 0 ∈ L 1 ( R ) and ( 1 − ∂ x 2 ) u 0 does not change sign, it is shown that there exists a...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2010-11, Vol.60 (9), p.2645-2652 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A nonlinear shallow water equation, which includes the famous Camassa–Holm (CH) and Degasperis–Procesi (DP) equations as special cases, is investigated. Provided that initial value
u
0
∈
H
s
(
1
≤
s
≤
3
2
)
,
u
0
∈
L
1
(
R
)
and
(
1
−
∂
x
2
)
u
0
does not change sign, it is shown that there exists a unique global weak solution to the equation. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2010.08.094 |