The relationship between collagen scaffold cross-linking agents and neutrophils in the foreign body reaction
Abstract In order to get more insight into the role of neutrophils on the micro-environment and consequently on macrophages in the foreign body reaction in mice, we investigated the fate of the two differently cross-linked dermal sheep collagen disks (glutaraldehyde = GDSC, hexamethylenediisocyanate...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2010-12, Vol.31 (35), p.9192-9201 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract In order to get more insight into the role of neutrophils on the micro-environment and consequently on macrophages in the foreign body reaction in mice, we investigated the fate of the two differently cross-linked dermal sheep collagen disks (glutaraldehyde = GDSC, hexamethylenediisocyanate = HDSC) in mice implanted in one anatomical location, namely subcutaneously. In GDSC massive infiltration of neutrophils is seen at day 2 and day 21, whereas in HDSC only minor infiltration is seen at day 2. The presence of neutrophils coincided with high levels of IFN-γ, a cytokine that activates macrophages. Major differences were seen in degradation rate of the two disks: GDSC was almost completely degraded after 28 days, whereas HDSC remained intact. Degradation of GDSC occurred through collagenolytic activity and phagocytosis by macrophages. Phagocytosis was observed at day 2 and day 21. IL-13 was only observed in HDSC, and this resulted in the presence of giant cells in HDSC. These giant cells produced IL-10, that promoted TIMP-1 expression and that inhibits collagenolytic and phagocytic activity. We conclude that the function of macrophages in mice is largely influenced by differences in micro-environment induced by GDSC and HDSC and that the presence/absence of neutrophils play a major role in the shaping of this micro-environment. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2010.08.049 |