Water sorption and water-induced molecular mobility in dental composite resins

Water sorption in two resin composites, Kulzer's Solitaire (S) and SDI's Wave (W), and in a polyacid-modified composite resin, 3M's F2000 (compomer F), was investigated by means of equilibrium sorption isotherms (ESI) and of dynamic sorption (DS) measurements. Molecular mobility in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2003-09, Vol.14 (9), p.753-759
Hauptverfasser: Lagouvardos, P E, Pissis, P, Kyritsis, A, Daoukaki, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water sorption in two resin composites, Kulzer's Solitaire (S) and SDI's Wave (W), and in a polyacid-modified composite resin, 3M's F2000 (compomer F), was investigated by means of equilibrium sorption isotherms (ESI) and of dynamic sorption (DS) measurements. Molecular mobility in these materials was studied by means of dielectric relaxation spectroscopy (DRS) and of thermally stimulated depolarization currents (TSDC) measurements. The results of ESI measurements show that at equilibrium, water is molecularly distributed in the materials and the effects of hydrophilic sites and clustering are negligible. Hysteresis effects in sorption-desorption cycles are larger in the resin composites than in the compomer. Equilibrium water uptakes in both ESI and DS conditions are rather low, in the range 1-2%. Diffusion coefficients of water are about 1x10(-8) cm(2)/s in the resin composites and by a factor of about 2 smaller in the compomer. Molecular mobility increases with hydration, as suggested by preliminary DRS and TSDC measurements. Detailed dielectric measurements may give important information for understanding, at the molecular level, water-induced degradation in dental materials.
ISSN:0957-4530
1573-4838
DOI:10.1023/A:1025080103857