Multiple positive solutions for p -Laplace elliptic equations involving concave–convex nonlinearities and a Hardy-type term
In this paper, the following problem is considered: { − Δ p u − μ | u | p − 2 u | x | p = λ f ( x ) | u | q − 2 u + g ( x ) | u | p ∗ − 2 u , x ∈ Ω , u = 0 , x ∈ ∂ Ω , where Ω ⊂ R N is a bounded domain such that 0 ∈ Ω , 1 < q < p , λ > 0 , μ < μ ̄ , f and g are nonnegative functions, μ ̄...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2011-01, Vol.74 (2), p.626-638 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the following problem is considered:
{
−
Δ
p
u
−
μ
|
u
|
p
−
2
u
|
x
|
p
=
λ
f
(
x
)
|
u
|
q
−
2
u
+
g
(
x
)
|
u
|
p
∗
−
2
u
,
x
∈
Ω
,
u
=
0
,
x
∈
∂
Ω
,
where
Ω
⊂
R
N
is a bounded domain such that
0
∈
Ω
,
1
<
q
<
p
,
λ
>
0
,
μ
<
μ
̄
,
f
and
g
are nonnegative functions,
μ
̄
=
(
N
−
p
p
)
p
is the best Hardy constant and
p
∗
=
N
p
N
−
p
is the critical Sobolev exponent. By extracting the Palais–Smale sequence in the Nehari manifold, the existence of multiple positive solutions to this equation is verified. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2010.09.017 |