Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials
It has been shown that blends of starch with a poly(ethylene-vinyl-alcohol) copolymer, EVOH, designated as SEVA-C, present an interesting combination of mechanical, degradation and biocompatible properties, specially when filled with hydroxyapatite (HA). Consequently, they may find a range of applic...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 1999-12, Vol.10 (12), p.857-862 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been shown that blends of starch with a poly(ethylene-vinyl-alcohol) copolymer, EVOH, designated as SEVA-C, present an interesting combination of mechanical, degradation and biocompatible properties, specially when filled with hydroxyapatite (HA). Consequently, they may find a range of applications in the biomaterials field. This work evaluated the influence of HA fillers and of blowing agents (used to produce porous architectures) over the viscoelastic properties of SEVA-C polymers, as seen by dynamic mechanical analysis (DMA), in order to speculate on their performances when withstanding cyclic loading in the body. The composite materials presented a promising performance under dynamic mechanical solicitation conditions. Two relaxations were found being attributed to the starch and EVOH phases. The EVOH relaxation process may be very useful in vivo improving the implants performance under cyclic loading. DMA results also showed that it is possible to produce SEVA-C compact surface/porous core architectures with a mechanical performance similar to that of SEVA-C dense materials. This may allow for the use of these materials as bone replacements or scaffolds that must withstand loads when implanted. |
---|---|
ISSN: | 0957-4530 1573-4838 |
DOI: | 10.1023/A:1008916901009 |